
Extracting Structured Information from Free Text Pathology Reports 
Gunther Schadow MD PhD, Clement J. McDonald MD 

Regenstrief Institute and Indiana University School of Medicine, Indianapolis, IN

We have developed a method that extracts structured 
information about specimens and their related findings 
in free-text surgical pathology reports. Our method 
uses regular expressions that drive a state-automaton 
on top of XSLT and Java. Text fragments identified are 
coded against the UMLS®. This paper describes the 
technical approach and reports on a preliminary 
evaluation study, designed to guide further develop-
ment. We found that of 275 reviewed reports, 91% were 
coded at least so that all specimens and their critical 
pathologic findings were represented in codes. 

Introduction 
The Shared Pathology Informatics Network (SPIN) 
establishes an Internet-based virtual database that will 
allow investigators to locate appropriate human tissue 
specimens for their research.1 Surgical pathology re-
ports are the primary source for tissue information; and 
while laboratory and microbiology reports are now 
quite commonly available in the form of structured data, 
surgical pathology reports are generally only available 
as free-text reports.  In this paper we discuss our ap-
proach of transforming surgical pathology reports into 
structured data and we discuss experiences made based 
on a preliminary evaluation of these methods. 

Text reports can be searched either by text indexing 
(word search) or by concept indexing (concept search). 
Word search is a generic easy to implement approach to 
locate information and such text indexing technology is 
readily available. Concept search has the advantages 
that one can find synonyms and related concepts with-
out necessarily using the same words, but is more 
difficult to implement because free-text expressions 
must first be mapped to a canonical terminology. 

Common approaches to free text are deep natural 
language understanding and information extraction. 
Medical investigators have applied language under-
standing techniques most commonly to discharge 
summaries, clinical notes, and radiology reports, and – 
outside of individualized patient care – to biomedical 
journal articles.2,3,4 Given the freedom in expression 
typical of these types of medical texts, parsing such 
texts requires very deep and detailed language models 
and results in highly generic data structures that contain 
much variability and are therefore hard to query. 

Conversely, information extraction is an approach 
that only captures key information, which can be done 
with simpler language models. Noun phrase detection 

techniques have been used to find concepts suitable for 
indexing (tissue, diagnoses, etc. are all noun phrases.) 
In the domain of surgical pathology certain information 
extraction methods have become known as “autocod-
ers” since they assign codes (e.g., SNOMED codes) to 
free text reports.5 More generic information extraction 
tools (such as the ones demonstrated at the Message 
Understanding Conference (MUC) are often geared to 
finding nouns with simple relationships, but typically 
cannot recover nested relationships.6 

Special Consideration for Surgical Pathology 
We hypothesized that surgical pathology reports would 
be easier to parse than radiology reports, clinical notes 
or discharge summaries, because they often conform to 
a certain structure that can be defined in considerable 
detail. This structure has been informally codified by 
the Association of Directors of Anatomic and Surgical 
Pathology (ADASP) publication of a Standardization of 
the Surgical Pathology Report7. This standard defines 
the common sections Gross Description, Microscopic 
Description, Final Diagnosis, etc. In turn, the standard 
defines the Final Diagnosis section as a list of all sepa-
rately identified tissues specified by (a) organ, (b) site, 
and (c) procedure, with diagnoses and other observa-
tions listed under each such tissue. The standard even 
goes into such detail as prescribing that observations be 
set off from their tissue subject using a dash or a colon.  

Methods 
To assess the performance of a simple approach to pars-
ing and coding diagnosis sections, based primarily on 
common text-report formatting style elements, we took 
a convenience sample of 622 reports from one pathol-
ogy laboratory. We de-identified the reports using a 
scrubbing method that we developed as part of the 
SPIN project under IRB approval (#0103-36). This 
scrubber was based on the Thomas-algorithm,8 but with 
enhanced scrubbing specificity and an automatic re-
moval of all text except for report-sections whose title 
contained the word “diagnosis”.  The resulting scrubbed 
report-fragments contained no patient identifying data. 
Among these report-fragments 347 (56%) did not con-
tain any explicit specimen information but only vague 
“descriptive diagnosis” (e.g. with the text “normal” or 
“see comments”.) These were excluded them from fur-
ther analysis. The remaining 275 report-fragments were 
the subject of this study.  Figure 1 shows a typical such 
final diagnosis section.  



The Parser 
We used a regular-expression-based parser that searched for specimen 
“headers,” i.e., that part of the diagnosis section, that identifies the tis-
sue-type (organ, e.g., Liver) site-modifiers (e.g., right lobe), and 
collection-method (procedure, e.g., segmentectomy). When the parser 
finds such a specimen header, it assumes that the immediately following 
text describes observations about that specimen. The observations may 
be diagnoses, assessments of surgical margins, invasion, grading and 
staging, etc. Figure 2 shows the structured information that the parser 
generates. 

We implemented this parser entirely in XSLT9, using Saxon10, with 
some calls to standard JAVA class libraries for regular expression match-
ing. For example, a single regular expression matches an entire specimen 
header using capturing groups to extract the components for tissue-type, 
site modifiers, and collection-method. When a specimen header is found, 
other regular expressions find diagnostic sentences. The regular expres-
sions are applied depending on context, which is controlled by 

<specimen item="1."> 
    <tissue-type code="C0023884" displayName="Liver"> 
        <text>Liver</text> 
    </tissue-type> 
    <site-modifier code="C0549183" displayName="Median Site"> 
        <text>right and median lobes</text> 
    </site-modifier> 
    <collection-method> 
        <text>trisegmentectomy</text> 
    </collection-method> 
    <observation> 
        <text>Poorly differentiated hepatocellular carcinoma.</text> 
        <code displayName="Tissue-DX" /> 
        <value code="C0019204" displayName="Primary carcinoma of the  
     liver cells" /> 
    </observation> 
    ... 
    <observation> 
        <text>- Surgical margin free of tumor.</text> 
        <negationInd value="true" /> 
        <code displayName="Tissue-Margin-DX" /> 
        <value code="C0027651" displayName="Neoplasms" /> 
    </observation> 
    ... 
</specimen> 
 
<specimen item="2."> 
    <tissue-type code="C0016976" displayName="Gallbladder"> 
        <text>Gallbladder</text> 
    </tissue-type> 
    <collection-method code="C0008320" displayName="Cholecystectomy"> 
        <text>cholecystectomy</text> 
    </collection-method> 
    <observation> 
        <text>Cholelithiasis.</text> 
        <code displayName="Tissue-DX" /> 
        <value code="C0008350" displayName="Cholelithiasis" /> 
    </observation> 
    ... 
    <observation> 
        <text>No evidence of involvement by tumor.</text> 
        <negationInd value="true" /> 
        <code displayName="Tissue-DX" /> 
        <value code="C0027651" displayName="Neoplasms" /> 
    </observation> 
    ... 
    <observation> 
        <code> 
            <text>Histopathologic Grade</text>  
        </code> 
        <value> 
            <text>G3 (Poorly differentiated).</text>  
        <value/> 
    </observation> 
</specimen> 

Figure 2: XML output for the example in Figure 1.  

... 
 
DIAGNOSIS: BASED ON GROSS AND MICROSCOPIC EXAMINATION 
 
[SP1. [ttLiver], [smright and median lobes], [cptrisegmentectomy]: 
[obxPoorly differentiated hepatocellular carcinoma.] 
[obx- Maximum tumor dimension is 17.0 cm.] 
[obx- Vascular invasion present.] 
[obx- Surgical margin free of tumor.] 
[obx- diaphragmatic invasion present (margins on diaphragm 
segment pending).] 
[obxChronic passive congestion.]] 
 
[SP2. [ttGallbladder], [cpcholecystectomy]: 
[obxCholelithiasis.] 
[obxMild chronic cholecystitis.] 
[obxNo evidence of involvement by tumor.] 
[obx[cdCancer Staging]: [valT4-NX-MX]] 
[obx[cdHistopathologic Grade]: [valG3 (Poorly differentiated)]]] 
 
##### has reviewed part of this case and concurs with the diagno-
sis. 
 
... 

Figure 1: Example a surgical pathology report’s final diagnosis section. The colors and brackets 
are added by the parser, but the original words and spacing are preserved. 



a pushdown state automaton. The “grammar” is de-
fined in XML that is a hybrid of XSLT with blended-in 
extensions defining the parser’s states and transitions. 
A “compiler-compiler” transforms the grammar defini-
tion into pure executable XSLT, where states are 
mapped to XSLT modes and transitions to XSLT tem-
plates. The events are defined by regular expressions.  

The Coder 
As a phrase coder we use the National Library of 
Medicine’s MMTx, the Java rewrite of the MetaMap 
UMLS coder.11  Because the MMTx system, although 
written in Java, is designed as a stand-alone program 
and relatively hard to move, we have wrapped a simple 
XML Web-Server around MMTx, so that we only 
need a single coder server installation. The coder is 
used strictly as a phrase coder, i.e., the parser sends 
small text fragments to the coder as HTTP GET re-
quest using the XPath function document with the 
phrase to be coded as part of the URL argument. The 
response to these requests is a small XML document of 
mappings and concepts sorted by descending score. 

Because the parser is aware of specific parts of the 
text, it can guide the coding process by accepting only 
certain UMLS semantic types that fit the expected 
meaning of the phrase. Based on experience of coding 
and reviewing a training set, we allowed the UMLS 
semantic types listed in Table 1 for the tissue-type, site 
modifiers, collection-method, and diagnosis compo-
nents. Particularly for tissue-type, we accept a wide 
range of semantic types because pathologists often use 
terms metaphorically, e.g., mentioning “shoulder” 
when they mean “skin of shoulder” and often the dif-
ference is so slight that the UMLS does not include the 
appropriate tissue concepts. For example, the word 
“tumor” is classified in the UMLS as a “neoplastic 
process” which is a “biologic function”. However, 
when used as a specimen type it is meant as an “anat-
omic structure” for which the UMLS lists no concept. 
Note that we have excluded the semantic type “find-
ing” from coding observations because in our 
experience it terms such as “maximum”, and “present” 
which are UMLS “findings”, have shadowed more 
useful terms in the phrase, thereby generating many 
useless codes. 

The observations under each specimen contain 
more complexity besides simple diagnostic assertions, 
including (a) negation, (b) uncertainty, (c) surgical 
margins, (d) invasiveness, (e) dimensions and (f) histo-
logical grading (of cancerous tissue), which are all 
relevant for us. Currently, our parser finds negation, 
uncertainty and observations of margins by the follow-
ing simple approach (prototypical for detecting the 
other kinds of information): First the parser cuts ob-
servation statements into smaller phrases separated by 

comma, semicolon, and by the words “and”, “with”, or 
“without”. Then, when the word “margin” or “mar-
gins” is mentioned in the phrase, it assumes that the 
phrase makes a statement about a margin. Likewise, a 
negating word “no”, “not”, “none”, “negative”, “ex-
clude(d)”, “free” and “without” signals that the entire 
phrase is negated. (Initially we did not include “de-
nies” and “absence”12.) The words “cannot”, 
“question(able)”, or “doubt(ful)” signal that the phrase 
is uncertainty. For example: “a firm diagnosis of ma-
lignancy […] cannot be made” was correctly marked 
as uncertain. 

Rating of Results 
The results were reviewed in a web-based review ap-
plication, where an excerpt of the XML encoding was 
displayed side-by-side with the relevant scrubbed free-
text sections. The coded phrases were highlighted by 
color codes and enclosed in brackets (see Figure 1.)  

For each report-fragment, the reviewer – who, for 
this preliminary evaluation was the same person as the 
developer and author of this paper (an M.D. without 
special training in pathology) – marked issues and then 
rated the overall coding on the following scale: 

Excellent: all interesting findings are coded. Even 
benign or normal findings must be coded 

Good: all critical findings are coded. Minor or be-
nign descriptive concepts need not be coded. 

Table 1: Matrix showing the semantic types expectations for the fields 
tissue-type (tt), site-modifier (sm), collection-method (cm), and diag-
nosis (dx), 1 means expected, blank or 0 means rejected.  

Semantic Type tt sm cm dx 

Acquired Abnormality (acab) 1   1 

Anatomical Abnormality (anab) 1   1 

Body System (bdsy) 1    

Body Location or Region (blor) 1 1   

Biomedical or Dental Material (bodm) 1    

Body Part (bpoc) 1 1   

Body Space or Junction (bsoj) 1    

Cell or Molecular Dysfunction (comd)    1 

Diagnostic Procedure (diap)   1  

Disease or Syndrome (dsyn) 1   1 

Embryonic Structure (emst) 1    

Finding (fndg) 1   0 

Neoplastic Process (neop) 1   1 

Organ (orga) 1    

Pathologic Function (patf)    1 

Substance (sbst) 1    

Sign or Symptom (sosy) 1   1 

Spatial Concept (spco)  1   

Tissue (tisu) 1    
Therapeutic or Preventive Procedure 
(topp)   1  



Sufficient: most critical findings are coded. Some 
critical findings may not be coded if they are repre-
sented by other findings that are coded. This includes 
if one specimen part among others has been missed 

Defective: major findings are not coded or nega-
tions not detected.  

Results 
Table 2 summarizes the results of the rating. It shows 
that about 90% of the coding was at least sufficient, 
i.e., had all of their critical findings represented by 
codes. Table 3 lists 5 kinds of errors identified through 
the review along with their frequency. 

In 4 cases, the UMLS in that version did not con-
tain an appropriate concept for the phrase (e.g., 
“fibrocystic change”, “squamous proliferation”, “li-
pofibroma”, and also “lipoma”.) Note that missing 
histo-pathologic concepts were the cause of less than 
optimal coding in a number of other cases as well but 
did not come to light in our review to date (since we 
did not rate the coding quality with more scrutiny, see 
discussion below.)  

In 2 cases, the UMLS lexicon list did not contain a 
synonym or the coder did not find a synonym that 
could have been found with word stemming (“eth-
moids” for “ethmoid bone” and “content” for 
“contents”.)  

In 5 cases the coder could not handle exceptional 
situations (e.g., “unknown site, procedure not speci-
fied”) or unusual expressions and typos. E.g., 
“disorder proliferative endometrium” (for the his-
tologic substrate of dysfunctional uterine bleeding) 
was coded simply as “disease”. A common type of 
problems is the coding of description of normal find-
ings (e.g., “Benign endocervical elements”) or 
inconclusive findings (e.g.,”Necro-inflammatory de-
bris and food fragments”.) 

In one case “Right upper lobe of lung” (as tissue 
type) was coded as “Right upper zone pneumonia” 
because this coding had received a slightly better score 
than a more appropriate coding. This problem with 
spurious or sub-optimal codes can be seen more fre-
quently in report-fragments otherwise satisfactorily 
coded. 

In 1/5 of the cases the key concept was coded but 
the coding was rejected because of an unexpected se-
mantic type. We failed to add “Body Substance” 
(bdsu) to the set of semantic types acceptable for tis-
sue-type and therefore failed to code “Urine” and 
“CSF”. In one case we missed “acute cellular rejec-
tion” because we do not accept “Organ or tissue 
function” (ortf) as observations. The reason we re-
jected this semantic type was that it would have caused 
the very common reference “See note” to be coded as 
the concept of “vision”.   

1/5 of the errors were due to unexpected text for-
mat that the parser was not prepared to handle. This 
includes interjected notes inside the diagnosis sections, 
and specimen headers broken into two lines of text. 

Two of the defective results were due to missed ne-
gation (just 2% of 143 properly detected negations.) In 
these two cases the negated concept was separated 
from the negation keyword by a comma (e.g., “no evi-
dence of granuloma, dysplasia or malignancy” coded 
as negated “granuloma” but affirmed “malignant neo-
plasm”.)  

Discussion 
Our parser is obviously handicapped by the fact that it 
relies only on structural clues (described by regular 
expressions.) This leads to great difficulties with re-
ports that are less consistently formatted. For instance, 
we need to have a clear distinction between specimen 
headers and observation statements underneath, which 
often is given through the placement of colons or 
dashes and clues such as indention. We would like to 
move towards more semantic constraint checking dur-
ing parsing. For example, when the a text assumed to 
be a specimen header does not have the semantic con-
tent of at least a tissue-type (organ, analyzed 
substance), we have to attempt coding an observation 
under the prior specimen instead. 

In order to drive the parser state-machine by se-
mantics, however, we need to improve on our use of 
the UMLS. Particularly we need to subset the UMLS 
into different sets of source code systems and semantic 
types when coding, so as to reduce the cases of spuri-
ous codes assigned to phrases when more appropriate 

Table 2: Distribution of Ratings 

rating n  n / 275 
excellent 81 29% 
good 117 43% 
sufficient 51 19% 
defective 26 9% 

 

Table 3: Distribution of Error Types 

type of error n  n / 26 

UMLS coding 12 46% 
semantic type neglect 5 19% 
unexpected format 5 19% 
negation scope 2 8% 
unknown (caused by a bug) 2 8% 

 



candidates are available given our semantic expecta-
tions. We should use the MetamorphoSys program, 
which is distributed with the UMLS Knowledge 
Source and subset our UMLS database to only include 
the relevant code systems. This would likely reduce the 
number of spurious codes. However, with Metamor-
phoSys, the subset is static and cannot be dynamically 
changed to accommodate changing semantic expecta-
tions during the coder process. 

Of course, a successor to our prototype needs to 
undergo more thorough evaluation with a better as-
sessment of the quality of the coding and the detail of 
what has been found. These reviews should best be 
carried out by pathologists not involved in the devel-
opment of our coder. However, we believe that before 
this is useful, we should at least improve on the termi-
nology model so that we can implement more 
normalization (e.g., mapping “left hand” and “hand, 
left” to the same concept “hand” with site-modifier 
“left”.)  

We also plan to translate the UMLS CUIs gener-
ated during coding into terms from a single source 
vocabulary that is appropriate for a single kind of con-
cept. For instance, if we translate the tissue diagnosis 
to ICD-O, we can then cross-reference and validate our 
automatically generated codes with cancer registry 
data. Often we also find SNOMED codes in the pa-
thology reports which we should recognize and 
compare our UMLS coding against those SNOMED 
codes. 

Conclusion 
Our coder method is simple and the grammar is small 
and maintainable, based mostly on regular expressions 
and produces an output that has the right level of struc-
ture, detail of information but also uniformity. Based 
on our performance review we are cautiously optimis-
tic that our approach makes sense to pursue further. In 
order to improve our parser’s performance, we need to 
better adapt the UMLS to the specific needs of surgical 
pathology reports.   
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